皇冠现金网怎么样-新2现金网娱乐城网址大全_德州百家乐扑克牌_菲律宾全讯网送彩金 (中国)·官方网站

學術講座

首頁 / 學術講座 / 正文

Inference of high-dimensional weak instrumental variable regression models without ridge-regularization

發布日期:2025-08-31 瀏覽量:

報告時間 2025年9月2日上午10:00
報告地點 北湖東校區數學與統計學院新樓216室
主辦單位 數學與統計學院/科研處
主 講 人 郭旭

  郭旭,博士,現為北京師范大學統計學院教授,博士生導師。一直從事回歸分析中復雜假設檢驗的理論方法及應用研究,近年來旨在對高維數據發展適當有效的檢驗方法。部分成果發表在JRSSB, JASABiometrikaJOE。曾榮獲北師大第十一屆“最受本科生歡迎的十佳教師”,北師大第十八屆青教賽一等獎和北京市第十三屆青教賽三等獎。

  報告摘要:Inference of instrumental variable regression models with many weak instruments attracts many attentions recently. To extend the classical Anderson-Rubin test to high-dimensional setting, many procedures adopt ridge-regularization. However, we show that it is not necessary to consider ridge-regularization. Actually we propose a new quadratic-type test statistic which does not involve tuning parameters.

  Our quadratic-type test exhibits high power against dense alternatives. While for sparse alternatives, we derive the asymptotic distribution of an existing maximum-type test, enabling the use of less conservative critical values. To achieve strong performance across a wide range of scenarios, we further introduce a combined test procedure that integrates the strengths of both approaches. This combined procedure is powerful without requiring prior knowledge of the underlying sparsityof the first-stage model. Compared to existing methods, our proposed tests are easy to implement, free of tuning parameters, and robust to arbitrarily weak instruments as well as heteroskedastic errors. Simulation studies and empirical applications demonstrate the advantages of our methods over existing approaches.


红桃K百家乐官网的玩法技巧和规则 | 真人百家乐官网园| 七匹狼百家乐官网的玩法技巧和规则 | 百家乐官网园首选去澳| 大发888官方 3000| 庞博百家乐官网的玩法技巧和规则 | 亿酷棋牌室| 澳门百家乐官网海洋阿强| 新濠百家乐官网娱乐场| bet365 日博| 真人百家乐官网视频赌博| 362百家乐的玩法技巧和规则| 太阳城百家乐官网币| 合肥百家乐赌博机| 正定县| 24山向内什么山向最好| 大发888掉线| 作弊百家乐官网赌具价格| 1737棋牌游戏中心| 网上百家乐破战| 粤港澳百家乐官网娱乐| 通许县| 老虎机破解方法| 澳门百家乐官网怎么赢钱| 1737棋牌游戏中心| 莫斯科百家乐的玩法技巧和规则| 豪杰百家乐官网现金网| 百家乐娱乐网真人娱乐网| 百家乐官网仿水晶筹码| 汉百家乐春| 百家乐官网赌博策略| 合肥百家乐赌博游戏机| 百家乐官网榄梯打法| 百家乐赌场技巧论坛| 百家乐官网变牌器| 宜兰县| 百家乐官网玩法及技巧| 新全讯网carrui| 鑫鼎百家乐官网的玩法技巧和规则 | 蜀都棋牌游戏| 好用百家乐分析软件|