皇冠现金网怎么样-新2现金网娱乐城网址大全_德州百家乐扑克牌_菲律宾全讯网送彩金 (中国)·官方网站

學術講座

首頁 / 學術講座 / 正文

Inference of high-dimensional weak instrumental variable regression models without ridge-regularization

發布日期:2025-08-31 瀏覽量:

報告時間 2025年9月2日上午10:00
報告地點 北湖東校區數學與統計學院新樓216室
主辦單位 數學與統計學院/科研處
主 講 人 郭旭

  郭旭,博士,現為北京師范大學統計學院教授,博士生導師。一直從事回歸分析中復雜假設檢驗的理論方法及應用研究,近年來旨在對高維數據發展適當有效的檢驗方法。部分成果發表在JRSSB, JASABiometrikaJOE。曾榮獲北師大第十一屆“最受本科生歡迎的十佳教師”,北師大第十八屆青教賽一等獎和北京市第十三屆青教賽三等獎。

  報告摘要:Inference of instrumental variable regression models with many weak instruments attracts many attentions recently. To extend the classical Anderson-Rubin test to high-dimensional setting, many procedures adopt ridge-regularization. However, we show that it is not necessary to consider ridge-regularization. Actually we propose a new quadratic-type test statistic which does not involve tuning parameters.

  Our quadratic-type test exhibits high power against dense alternatives. While for sparse alternatives, we derive the asymptotic distribution of an existing maximum-type test, enabling the use of less conservative critical values. To achieve strong performance across a wide range of scenarios, we further introduce a combined test procedure that integrates the strengths of both approaches. This combined procedure is powerful without requiring prior knowledge of the underlying sparsityof the first-stage model. Compared to existing methods, our proposed tests are easy to implement, free of tuning parameters, and robust to arbitrarily weak instruments as well as heteroskedastic errors. Simulation studies and empirical applications demonstrate the advantages of our methods over existing approaches.


澳门百家乐官网出千| 24山是那二十四山| 最新百家乐官网双面数字筹码 | 大发扑克网| 百家乐官网娱乐平台网77scs| 百家乐官网视频游戏界面| 百家乐返点| 粤港澳百家乐赌场娱乐网规则| bet365存款| 百家乐任你博娱乐平台| 百家乐官网布| 澳门百家乐真人娱乐场| 网上玩百家乐官网技巧| 百家乐2号机器投注技巧| 大发888ber娱乐场下载| 全迅网百家乐官网的玩法技巧和规则| 99真人娱乐城| 博狗百家乐的玩法技巧和规则| 百家乐现场新全讯网| bet365最新网址| 六合彩开奖现场直播| 百家乐官网投注网站是多少| 足球.百家乐投注网出租| 河北省| 大发888体育网| 蓝盾百家乐赌场娱乐网规则| 南康市| 属虎属龙做生意| 钱柜娱乐城现金网| 足球竞猜| 闲和庄百家乐娱乐网| 百家乐官网园天将| 汾阳市| 体育投注| 百家乐发牌靴发牌盒| 金城百家乐官网买卖路| 孝昌县| 香港六合彩开奖历史记录| 百家乐如何必胜| 百家乐官网有免费玩| 大发888平台|