皇冠现金网怎么样-新2现金网娱乐城网址大全_德州百家乐扑克牌_菲律宾全讯网送彩金 (中国)·官方网站

學(xué)術(shù)講座

首頁(yè) / 學(xué)術(shù)講座 / 正文

Robot Control, Learning, Perception and Teleoperation

發(fā)布日期:2025-04-14 瀏覽量:

報(bào)告時(shí)間 2025年4月25日 下午4:30-5:30
報(bào)告地點(diǎn) 騰訊會(huì)議:659-880-620
主辦單位 電氣與電子工程學(xué)院/科研處
主 講 人 楊辰光

楊辰光,英國(guó)利物浦大學(xué)機(jī)器人學(xué)講席教授,機(jī)器人及自主系統(tǒng)研究團(tuán)隊(duì)帶頭人,歐洲科學(xué)與藝術(shù)院院士,國(guó)際電氣與電子工程師協(xié)會(huì)(IEEE)、英國(guó)工程技術(shù)學(xué)會(huì)(IET)、英國(guó)機(jī)械工程師學(xué)會(huì)(IMechE)、亞太人工智能學(xué)會(huì)(AAIA)及英國(guó)計(jì)算機(jī)學(xué)會(huì)(BCS)會(huì)士。現(xiàn)任IEEE柔性制造協(xié)同自動(dòng)化技術(shù)委員會(huì)(CAFM)聯(lián)席主席,《Robot Learning》創(chuàng)刊主編、《IEEE系統(tǒng)、人與控制論匯刊:系統(tǒng)》及《IEEE自動(dòng)化科學(xué)與工程匯刊》高級(jí)編輯,《Frontiers in Robotics and AI》期刊機(jī)器人計(jì)算智能領(lǐng)域首席主編。曾以大會(huì)主席身份成功籌辦第25屆IEEE工業(yè)技術(shù)國(guó)際會(huì)議(ICIT)和第27屆自動(dòng)化與計(jì)算國(guó)際會(huì)議(ICAC)。先后獲得2012年“IEEE機(jī)器人學(xué)匯刊最佳論文獎(jiǎng)”及2022年“IEEE神經(jīng)網(wǎng)絡(luò)與學(xué)習(xí)系統(tǒng)匯刊杰出論文獎(jiǎng)”兩大國(guó)際頂級(jí)期刊獎(jiǎng)項(xiàng)。

  報(bào)告摘要:

Learning from Demonstration (LfD), or imitation learning, allows robots to acquire and generalize task skills through human demonstrations, creating a seamless integration of artificial intelligence and robotics. Most LfD approaches often overlook the importance of demonstrated forces and rely on manually configured impedance parameters. In response, my team has developed a series of biomimetic impedance and force controllers inspired by neuroscientific findings on motor control mechanisms in humans, enabling robots to imitate compliant manipulation skills. Our models reduce the dimensionality of skill representation, facilitating online optimization and reducing system sensitivity to parameter changes. To improve robot skill learning through enhanced perceptual capabilities, we designed anthropomorphic visual tactile sensors that assess contact force, surface texture, and shape, closely resembling the softness and wear resistance of human fingers for superior manipulation. The control and learning technologies we have developed have been particularly effective in robot teleoperation and human-robot collaboration, with shared control-based semi-autonomous methods that effectively integrate human intent with robotic autonomy, thereby achieving greater efficiency and usability.


百家乐7杀6| 免费百家乐在线| 百家乐官网只打一种牌型| 百家乐官网长庄投注 | 德州扑克比赛规则| 百家乐官网娱乐优惠| 大发888娱乐场下载 df888ylc3403| 7位百家乐官网扑克桌| 赌场风云剧情介绍| 百家乐记算| 百家乐官网和的几率| 大发888游戏软件下载| 百家乐电子作弊器| 百家乐官网马渚| 波克棋牌下载| 三元风水24山水法| 百家乐官网公试打法| 威尼斯人娱乐场网站| 葡京百家乐注码| 增城市| 网络百家乐真人游戏| 百家乐官网缆法排行榜| 全讯网123| 百家乐有几种玩法| 百家乐官网赌机玩法| 博彩吧| 金臂百家乐开户送彩金| 百家乐官网翻天粤语下载| 足球波胆| 博士百家乐现金网| 网上百家乐官网如何作假| 大发888主页优惠| 百家乐最好的投注方法| 至尊百家乐官网赌场娱乐网规则 | 广州百家乐官网赌场娱乐网规则 | 大发888最新官方网址| 百家乐赌博外挂| 赢家百家乐官网的玩法技巧和规则| 百家乐小路规则| 顶尖百家乐学习| 真人版百家乐官网试玩|