陳夏,美國田納西大學數學系教授,國家級專家,主要研究方向為概率論及其相關領域,在大偏差理論與交叉局部時和拋物Anderson模型方面,取得了很多創新成果,在頂級雜志期刊(如 The Annals of Probability ,Annales de l'Institut Henri Poincare等)上發表過多篇論文,出版過專著《Random walk intersections》,獲得了Simons基金、國家“計劃”專家配套基金等資助和獎金,在2008年被評為國際數理統計協會(IMS)的會員,多次擔任美國國家自然基金評審委員,多次應邀在國際會議做報告。
報告摘要:Intuitively, inttermittency refers to a state of the system with random noise in which the high peak is rare but real. In mathematics, it can be described in terms of moment asymptotics of the system.
Compared to the parabolic Anderson equation, the inttermittency for hyperbolic Anderson equation is much harder and less investigated due to absence of Feynman-Kac formula that links the parabolic Anderson equation to Brownian motions. I will report some recent progress in the regimes of Stratonovich. In particular, I will show how the large deviation technique is combined with Laplace-Fourier transforms and Malliavin calculus to achieve the precise moment asymptotics.